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M O T I O N  OF A H Y D R O F O I L  ABOVE AN I N T E R F A C E  

B E T W E E N  T W O  H E A V Y  FLUIDS 

S. I. Gorlov UDC 532.59 

The problem of motion of a hydrofoil near the interface between two media is primarily interesting 
owing to practical applications. The main results in this area were obtained by solving the problem of hydrofoil 
motion under the interface between two heavy liquids, i.e., in a denser medium [1]. However, it is of interest 
to consider the hydrofoil motion in a less dense liquid, in particular, in air above water. This is the subject of 
the present study. 

We constructed an algorithm for solving this problem which allows us to perform highly accurate 
calculations. For a hydrofoil moving above the air-water interface, we analyzed the dependence of the 
distributed and total hydrodynamic characteristics and also the interface shape on the problem parameters. 

1. Let us consider the linear boundary-value problem of steady-state motion of a hydrofoil L above the 
interface between two media. The liquid is assumed to be ideal, incompressible, heavy, and homogeneous in 
layers D1 and D2. We introduce a coordinate system Ozy with the Oz axis directed along the unperturbed 
interface and with the Oy axis passing through the leading edge of the hydrofoil (Fig. 1). The following 
notation is used: g is the acceleration of gravity; pk and Vk are the density and velocity at infinity in front 
of the hydrofoil in layer Dk (k = 1 and 2); H is the distance between the leading hydrofoil edge and the 
unperturbed medium interface; and ~ and b are the angle of attack and the hydrofoil chord, respectively. 

To describe the motion of a liquid in layer Dk, we introduce the complex velocities Vk(z) (k = 1 
and 2), z = z + iy. For the function Vk(z) the following conditions must be satisfied: the analyticity in Dk 
(beyond the contour L for k = 2), the continuity of both pressure and the normal velocity component in 
passage through the interface between two media, the decay of perturbed velocities at infinity in front of the 
hydrofoil, and the absence of a liquid flow through the contour L. In addition, we search for a solution in the 
class of functions that satisfy the Joukowski postulate in the trailing edge of the hydrofoil. 

This boundary-value problem can be reduced to either of two integral equations: 

Im{Vo(z)e i~ = O, z ~ L; (1.1) 

- ~ 7 ( s )  = Re{Vo(z)ei~ z E L. (1.2) 

Here s is the arc coordinate of point z E L; 7(s) is the intensity of the vortex layer simulating L; O(s) is the 
angle between the tangent to L at point z(s) and the Ox axis; V0(z) = V2(z) for z e L, and the complex 
velocities Vk(z) (k = 1 and 2) are determined from the formulas 

1 
f gk(z,  r 7 (s) e -i~ d~, k = 1, 2; (1.3) Vk(z) = Vkoo + 2~r-'-'i 
L 

Kl(z,~) = V___~ lV'oo fm122ri z - ~ l  ulm~2; f e-i~(z-r dA - vlrn~2i e-i"a("-r (1.4) 
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where 

1 1 m12 1 vlm22 7eta(z-~) 
K2(z,r - 2ri z - (  2ri z - r  -~ j ~ :  ~ dA-vzrn~2ie  ivt(z-r (1.5) 

o 

p l v ? o o  : g ( , ,  - . p2V oo 

Expressions (1.4) and (1.5), derived for gk(z ,  r (k = 1 and 2) using the method proposed in [2], are 
exact solutions of the corresponding boundary-value problem of a vortex of unit  intensity. 

According to [3], a system of integral equations that  do not degenerate in the limiting case of an 
infinitely small hydrofoil thickness was derived from (1.1) and (1.2). A method for solving this system in the 
class of functions 7(s) satisfying the Joukowski postulate is presented in [4]. The  interface shape is given by 

f ( x ) =  1 R e [ "  ' [V , ( z )  1 ) - m  2 {'V2(z) 1)} ,  z = x ,  

where Vk(z) (k = 1 and 2) is determined by formulas (1.3)-(1.5). 
The pressure distribution over the hydrofoil, the total hydrodynamic forces Rz and Ry, and also the 

moment M of hydrodynamic forces are calculated as described in [5]. 
2. Calculations were performed for a symmetric Joukowski profile. The calculation algorithm was 

tested, using the well-known solutions of the problems of infinite fluid flow past a Joukowski hydrofoil and 
motion of the hydrofoil above a solid flat screen [4]. In this case, the relative calculation error was not greater 
than leA. 

The dimensionless parameters of the problem are the Froude number Fr = V2~/v /~ ,  the ratio of 
densities p, = p2/pz, the ratio of flow velocities v, = V2oo/Vl~, the dimensionless distance between the 
trailing edge and the unperturbed interface h = H/b, and the relative hydrofoil thickness c. 

We calculated the standard aerodynamic coefficients C~, Cy, and Cm, which determine the total 
aerodynamic forces Rz and Ry, and the moment  M relative to the leading edge of the airfoil, the dimensionless 
distance between the pressure center and the leading edge Cd = Cm/(Cy cos a - C~ sin a), and the pressure 
distribution over the hydrofoil contour, i.e., the coefficient Cp = 2(p - p~)/(p~V~oo) , where p and p~  are the 
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hydrodynamic pressures at a given and infinitely distant points. 
For the problem of motion of an airfoil above the air-water interface (p. = 0.00125 and v. = 1), 

a numerical experiment was carried out to estimate the influence of these parameters on the distributed 
and total hydrodynamic hydrofoil characteristics and on the interface shape. The main results are shown in 
Figs. 2-5. 

Figure 2 shows the curve of Cy versus the parameter h for c = 0, 0.1, and 0.2; a = 10, 5, 0, -5 ,  and 
- 1 0  ~ (curves 1-5); and Fr = 1. As the hydrofoil thickness increases and the distance between the hydrofoil 
and the interface decreases, the lift modulus increases. This effect is especially noticeable for the negative 
angles of attack. A similar character of the effect of the hydrofoil thickness was observed for the moment 
coefficient Cm. In this case, the coefficient C,  is of the order of 10 -4. Calculations show that there are no 
noticeable changes in the coefficients Cx, C~, and Cm with an increase of the Froude number. 

Figure 3 demonstrates the location of the pressure center on the hydrofoil versus the parameter h for 
= 10, 5, -5 ,  and - 1 0  ~ (curves 1-4) and c = 0, 0.1, and 0.2 for Fr = 1. The behavior of the coefficient Cd 

appeared to be similar to that for the problem of motion of a hydrofoil above a screen [4]. 
Of interest is the pressure distribution over the hydrofoil contour (Fig. 4). We chose the following 

parameters: c = 0, 0.1, and 0.2; a = 5 ~ h = 0.5, and Fr = 1. A substantial change in the pressure distribution 
is observed with increasing hydrofoil thickness. 

The interface shape versus the Froude number (curves 1-8 correspond to Fr = 0.5, 0.6, 0.7, 0.8, 0.9, 
1.0, 1.1, and 1.2) for h = 0.5 and a = 5 ~ for c = 0, 0.1, and 0.2, is shown in Fig. 5. In this case, a considerable 
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effect of the hydrofoil thickness and Froude number is observed. 
Numerical results enable the following conclusions to be drawn. The distributed and total 

hydrodynamic characteristics of a hydrofoil moving above the air-water interface are practically independent of 
the Froudc number. This allows this intcrface to bc simulated by a screen in the calculations of hydrodynamic 
reactions on the hydrofoil. However, thc shape of the air-water interface depends significantly on the Froude 
numb~2r. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-01049). 
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